2 research outputs found

    Adaptive Suppression of Interfering Signals in Communication Systems

    Get PDF
    The growth in the number of wireless devices and applications underscores the need for characterizing and mitigating interference induced problems such as distortion and blocking. A typical interference scenario involves the detection of a small amplitude signal of interest (SOI) in the presence of a large amplitude interfering signal; it is desirable to attenuate the interfering signal while preserving the integrity of SOI and an appropriate dynamic range. If the frequency of the interfering signal varies or is unknown, an adaptive notch function must be applied in order to maintain adequate attenuation. This work explores the performance space of a phase cancellation technique used in implementing the desired notch function for communication systems in the 1-3 GHz frequency range. A system level model constructed with MATLAB and related simulation results assist in building the theoretical foundation for setting performance bounds on the implemented solution and deriving hardware specifications for the RF notch subsystem devices. Simulations and measurements are presented for a Low Noise Amplifer (LNA), voltage variable attenuators, bandpass filters and phase shifters. Ultimately, full system tests provide a measure of merit for this work as well as invaluable lessons learned. The emphasis of this project is the on-wafer LNA measurements, dependence of IC system performance on mismatches and overall system performance tests. Where possible, predictions are plotted alongside measured data. The reasonable match between the two validates system and component models and more than compensates for the painstaking modeling efforts. Most importantly, using the signal to interferer ratio (SIR) as a figure of merit, experimental results demonstrate up to 58 dB of SIR improvement. This number represents a remarkable advancement in interference rejection at RF or microwave frequencies

    Development of an Electromagnetic Glottal Waveform Sensor for Applications in High Acoustic Noise Environments

    Get PDF
    The challenges of measuring speech signals in the presence of a strong background noise cannot be easily addressed with traditional acoustic technology. A recent solution to the problem considers combining acoustic sensor measurements with real-time, non-acoustic detection of an aspect of the speech production process. While significant advancements have been made in that area using low-power radar-based techniques, drawbacks inherent to the operation of such sensors are yet to be surmounted. Therefore, one imperative scientific objective is to devise new, non-invasive non-acoustic sensor topologies that offer improvements regarding sensitivity, robustness, and acoustic bandwidth. This project investigates a novel design that directly senses the glottal flow waveform by measuring variations in the electromagnetic properties of neck tissues during voiced segments of speech. The approach is to explore two distinct sensor configurations, namely the“six-element and the“parallel-plate resonator. The research focuses on the modeling aspect of the biological load and the resonator prototypes using multi-transmission line (MTL) and finite element (FE) simulation tools. Finally, bench tests performed with both prototypes on phantom loads as well as human subjects are presented
    corecore